ACNET to Offline: Beam Data Process, Offline Interface
and First Look at Some Data

Brett Viren Mary Bishai
Brookhaven National Lab Brookhaven National Lab
bv@bnl.gov mbishai@bnl.gov

1/17 — Contents

e Context, from ACNET to us?.

e The Beam Data Process
e Offline interface to the data

e First data, a look at timestamps

2With much thanks to Charlie King and Jim Patrick

2/17 — Context of the Beam Data Process (BDP)

D Device list,

triger, & delay
ACNET —

Frontends
ACNET M M XML-RPC

RotoTalk
il JavaRMI | L

X DAE Il DAC y© N
/I_E BeamData Process Rotorooter &
Dispatcher

Data callbacks

—
—

38

1. BDP sends device list, event & delay a Data Acquisition Client (DAC)
2. DAC pushes these to the Data Acquisition Engine (DAE)
3. ACNET devices trigger on, potentially different, events+delays

4. DAE waits for event+delay then polls frontends for data (”soft” mode) and

timestamp 1t
5. DAE pushes data to DACs, DACs push to Beam Data process
6. Beam Data Process pushes data to rotorooter

7. Dispatcher serves rotorooter output ROOT files

3/17 — Details of ACNET side of things

53 MHz RF
10 MHz serial link (TCLK)

\\\\\\\\\\\\\\\\\\\\\

OxA9 Kicker Timer

Universal Clock

Hadron/muon Decoder

Front ends Monitors
VME time stamp 66ms TCLK snapshot
> Local VME GPS time stamp

S Sepre

Data Acquisition * I. (13'Hz)
Engine (server node)
BD GPS time stamp

RM ﬁv ava) &

1

1

e

Data "CLOCK"
Acquisition XMLRPC server m”mb.,@mzo
O_ _mj._”w Limited access BD network u._.z.:m since A9

minos—om.fnal.gov
NTP time stamp

- == Hard event path - == Soft event path M. Bishai

4/17 — Beam Data Process Startup protocol

I mfe

BeamData Process

1. BDP configured with sets of event, delay and associated devices.

2. Spawn XML-RPC listener on port localhost:19870, (currently minos-om,

will move to dcscdp-nd)

Initiate RotoTalk connection

> W

Register each set with the XML-RPC DAC
. Process DAC callbacks

Ot

6. If get “shutdown” callback, disassociate sets with XML-RPC DAC, close

RotoTalk connections, exit.

5/17 — Planned development of the Beam Data Process

Provide methods to report the health of the BDP as well as the connection
to DAC

Provide GUI to start, configure, monitor and restart the BDP Hook in to

alarm system (apparently we currently have none?)

Remove limit on number of sets of device list, event and delay? Will we
need to allow for arbitrary numbers of sets to get readout timing correct

for all devices?

Spill number is currently just a count from an arbitrary starting point. Do

we want to do anything more?

Will explore using Java Analysis Studio (JAS) to provide prompt
monitoring displays (existing expertise and ACNET specific module in BD)

Final shift integration will be in second half of Oct. when I’'m on FC shift.

6/17 — ACNET data, devices and dirty tricks

Data Types:
e Device data varies in type and structure
e XML-RPC interface gives blocks of unstructured 64 bit doubles
e RotoTalk requires blocks of loosely structured 32 bit ints
Device types:
e Scalar and array valued data, arrays may be implicitly structured
e SWIC scanner, BPM hold VME timestamp, statistics
Dirty tricks:

e memcpy array of N ACNET doubles to array of 2N RotoTalk ints, reverse

it in the offline

e ACNET scaling in Java: int/32767%10.0, leads to round off error when
unscaling in C++

e Creative encodings, decode requires explicit knowledge. Eg:

SWIC VME secs = (x1%3276.7001) <<16+(x2*3276.7001)&0xfff

7/17 — Overview of Offline Interface to the Raw Beam Data

Hide complexity and quirks under layers:

e Low level map-like interface: ACNET name — per-device generic data block
unpacker
e Generic per-device raw data block unpacker:
o Access data as int[] or double[]

o Access DAE time stamp

e Provide specialized unpacker helpers for complex devices:
o Uses generic per-device unpacker

o SWIC & BPMs implemented so far
o VME timestamps for these

8/17 — UML of Raw Beam Data class

RawBeamMonBlock

V

+Get Nanes() :

+sInSpill():

vect or<stri ng>

|AAHV¥+ocmqmﬂqu_AQm<momlsm:m“mﬁq_smv” const RawBeanDat a*

bool

RawDataBlock

#data_ bl ock: int*

RawBeamPosData

RawBeamData

-one_device_data bl ock: int*

+Get Seconds() :

+CGet Bl ock(): const int*
+Get Data(): const doubl e*
| nt

+Get Msecs(): int

+Get Nane(): string

+Set Dat a(dat a: const RawBeanDat a&)
+VneSeconds(): int
+VneNanoseconds(): int

+Posi ti ons(pos: vect or <doubl e>&)
+Posi ti onsRM5(r ns: vect or <doubl e>&)

RawBeamSwicData

+Set Dat a(dat a: const RawBeanDat a&)
+VmeSeconds(): int
+VmeNanoseconds(): int

+Unscal edW r eDat a(wd: vect or <i nt >&)
+Scal edW r eDat a(wd: vect or <doubl e>&)

9/17 — Illustrative Example
JobCResult MyModule: :Ana(const MomNavigator* mom) {

TObject* obj = mom->GetFragment ("RawBeamMonBlock") ;

RawBeamMonBlock* rbmb = dynamic_cast<RawBeamMonBlock*>(obj) ;

cout << (rbmb->IsInSpill() 7 "In spill" : "Pedestal") << endl;

const RawBeamDatax* rbd = (xrbmb) ["Z:T1S1DS"]; // should check for NULL

RawBeamSwicData swic(*rbd);

double vme = swic.VmeSeconds() + swic.VmeNanoseconds()/1.0E9;
double dae = rbd->GetSeconds() + rbd->GetMsecs()/1.0E3;

cout << "Timestamps: DAE: " << dae << "VME:" << vme << endl;

vector<int> wd;
swic.UnscaledWireData(wd) ;
// use the wire data

}// See BeamData/ana/ for more unpacking examples.

10/17 — Planned changes to Offline Interface

e We need to know callback trigger values to interpret DAE timestamps so
the RawBeamMonBlock will be modified to include this.

e Any other meta info needed?

11/17 — Known Timestamps

VME timestamps:

e GPS/3$8F sync’ed, ~10u precision

e Latency ~msec + integration gate

e Applied by VME after data read out over ARCNET

e Only available on some devices: SWIC, PBM, Intensity monitors(?)
DAE timestamps:

e GPS/NTP sync’ed, ~msec precision

e Latency ~10s msec + fixed delay, sub second jitter

e Applied when DAE receives data over ACNET

e One associated with each ACNET device
Time since event:

e Open Access Client (OAC) pseudo-device, holds msec since event

e Latency ~10-100s msec + fixed delay, sub second jitter

12/17 — A look at SWIC scanner data

e Device Z:T1S1DS, set for Albert’s testing
e ~40 hours data from 8/30-9/01 (138975 sec = 28k $02 events)
e Double trigger based on $02, 5 sec period

e Two DACs provide in-spill and pedestal callbacks

13/17 — Timing of Z:T1S1DS.

VME timestamps

e,02,e,1100 e,02,e,2000
$02 $02
"In spill" "Pedestals”
< >
10ms > <€
1000ms
gate
SWIC DAQ gate
_________— T 1T T 1T T 1T T T NI 1 rr 1T rrp 1T 1T 11 1 T 1T
0 4 5
500ms
500ms Forced Callback
A (now removed)
ACNET readout
T 1T 11T 1T 1T 11 rrr 1 111 1§ 11 _____________—
0 NG 3 4 5
$02 e,02,e,1500 DAE timestamps e,02,e,3500 $02

14/17 — Device G:EO2SNC: Time Since Event 0x02

Time Since 02, in spill

10*

10°

10?

10

[EEY
I

Bl

hts_spill_z
Entries 36221
Mean 1.513
RMS 0.01152
Underflow 8425
Overflow 5

L

1 1112 13 14 15 16 1.7 1.8 1.9 2
Time since $02 (sec)

Time Since 02, pedestals

10*

10°

10

=
[

hts ped z
Entries 35952
Mean 3.513
RMS 0.00946
Underflow 8163
Overflow 4

WETERRERER =___:__:__

3 31 32 33 34 35 36 3.7 38 39 4

Time since $02 (sec)

15/17 — SWIC Scanner DAE-VME timestamp differences

DAE-VME times hdt_spill
Entries 27800
— Mean 0.4008
— RMS 0.02655
— Underflow 0
B Overflow 0
10° —
- | hdt ped
B i Entries 27786
- Mean 0.5057
2 RMS 0.0233
10 = Underflow 0]
— | Overflow 0
10
1
”_ 11 1 _ 1 1 1 _ L1 1 1 _ | T I | _ | | _ 1 1 1 _ | | __I_ 11 1 _ 1 1 1 _ 1 1 1

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DAE-VME time (sec)

16/17 — “New style” BPM: DAE-VME timestamp differences

BPM: DAE-VME times hdt_bpm
Entries 12997
— Mean 1.53
| RMS 0.08705
3 J Underflow 0
10 m| Overflow 0
10° —
10
1E
H_ | | | _ | | | | _ | | | | _ | | | _ | | | | _ | | | | _ | | | | _ | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4

DAE-VME time (sec)

17/17 — Summary

e Beam Data Process code running now. Clean up and shifter-friendly

additions planned.
e Currently targetting JAS to implement prompt monitor displays

e DAE Timestamping looks adequate for per-spill NearDet correlation, more
accurate VME timestamps available for some devices

e Offline classes mostly ready for use, specialized unpackers exist for all
known complex devices. Some small additions planned.

